

Kaili Resources Limited (formerly Omnitech Holdings Limited) ARBN 077 559 525 Suite 1612 87-89 Liverpool Street SYDNEY, NSW 2000

PO Box 20439 World Square, Sydney NSW 2002, Australia T: +612 9267 5988 F: +612 9283 7166 E: contact@kailigroup.com.au

Maiden 97 Mt JORC Resource at the Maryvale Coal Project

Kaili Resources Limited ("Kaili") is pleased to announce the maiden In Situ Gasification (ISG) JORC Resource at its Maryvale Coal Project ("Project") of 97 million tonnes Inferred for the project.

The Project is strategically located in the Clarence Moreton Basin, 222km from the Port of Brisbane. The Project is adjacent to the New England Highway which connects the project area with Toowoomba for a distance of 77km. Then by the heavy haulage rail system, transporting coal for export through the Port of Brisbane for 145km (FIGURE 2).

The maiden JORC 2012 compliant resource is managed by APEC Coal Pty Ltd, a 100% subsidiary of Kaili. The JORC Resource work was managed by Brisbane consultancy Geoconsult Pty Ltd ("Geoconsult"), primarily incorporating data acquired from the 2010 and 2016 drilling programs. Geoconsult staff has the relevant experience to be the competent person for the preparation of the Resource and Exploration Targets. **TABLE 1** and **2** summarise the Resource and Exploration Target Estimates.

FIGURE 1: MARYVALE COAL PROJECT LOCATION

TABLE 1: INFERRED (ISG) RESOURCE ESTIMATE

Resource Polygon	Working Section	Thickness (m)	Inherent Moisture (ad%)	Ash (ad%)	Volatiles (ad%)	Density (RD)	Tonnage (Mt)
Maryvale ISG Total	BU31-35	2.85	7.2	47.2	25.6	1.68	97

TABLE 2: EXPLORATION TARGET OPEN-CUT AND ISG ESTIMATES

Resource Polygon	Working Section	Thickness (m)	Tonnage (Mt)
Open-Cut Total	BU31-BU35	3.3	80-105
ISG Total	BU31-BU35	2.5	90-125

Nb. packages lacked sufficient Points of Observations spacing to classify as Coal Resources and are expressed in ranges (lower- upper). Targets are conceptual in nature. The potential quantity and quality is conceptual in nature and there has been insufficient exploration to estimate a resource and it is uncertain if further exploration will result in the estimation of a mineral resource

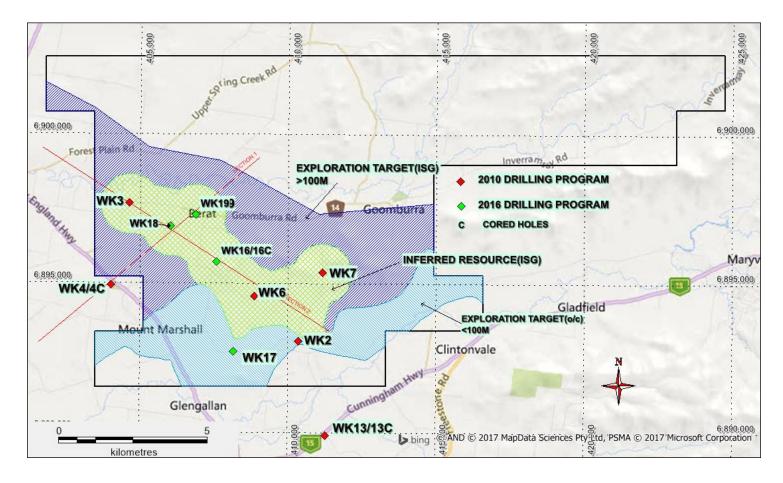


FIGURE 2: MARYVALE COAL PROJECT RESOURCE AND EXPLORATION TARGET POLYGONS (BULWER PACKAGE) `

The Maryvale ISG Resource is shown in **FIGURE 2** in addition to the Open Cut Exploration Target in light blue and the ISG Exploration target in dark blue. Only exploration targets with <100m of overburden were considered in the open cut Exploration Target and areas with a minimum overburden of 100m were considered in the ISG Exploration Target.

The seam and area of interest is the Bulwer Seam (Taroom Coal Measures) within the Maryvale EPC1506 Project Area. This announcement and the resource/exploration target is a summary of the 2016 coal resource estimation project work carried out by Geoconsult.

Exploration data for the Maryvale Project Area is constituted of:


- data previously obtained from public domain records (Buck, 2010);
- drillhole data derived from various previous exploration programs (Buck, 2010);
- an exploration program of two partially cored drillholes and six open drillholes conducted by Clean Global Energy in 2010 (Buck, 2010); and
- an exploration program of one partially cored drillhole and five open drillholes conducted by Kaili in 2016 (this report).

The 2010 and 2016 drillholes are the central basis of the geological data used in the resource estimate. These holes specifically targeted the Taroom Coal Measures of the Walloon Sub-Group in a depth range of 100m to 350m and they intersected significant portions of the stratigraphic sequence. Drillholes WK16, WK16C, WK17, WK18 & WK19 are located within the Goomburra area of EPC1506 with the drill hole locations shown in **FIGURE 2**.

FIGURE 3: EXPLORATION DRILLING AT THE MARYVALE COAL PROJECT

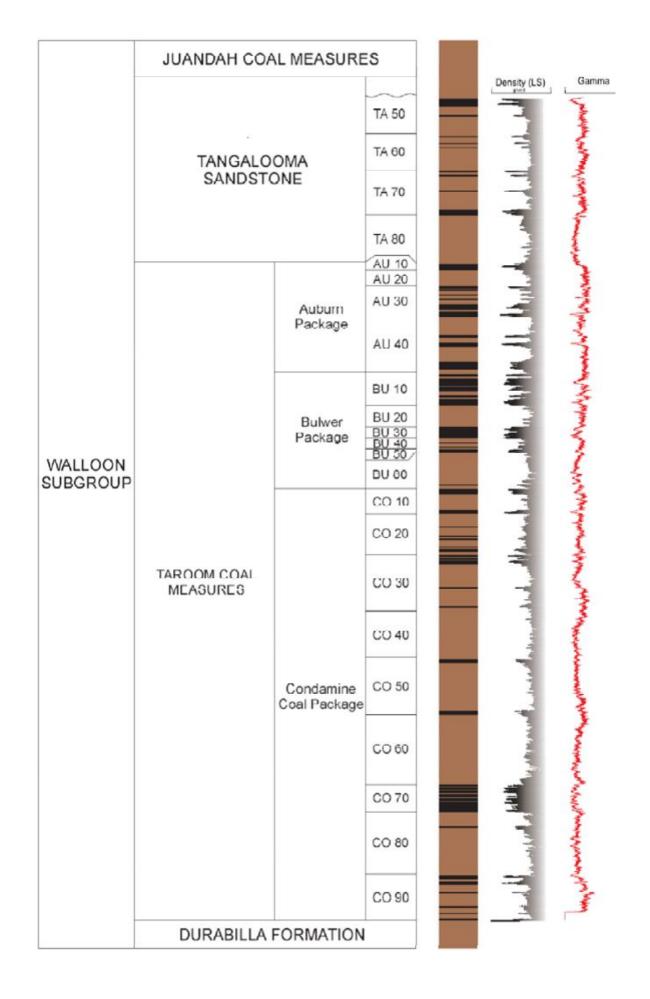


FIGURE 4: SAMPLING THE BULWER SEAM FROM WK16c AND THE CONVERSION OF WK18 TO A WATER BORE

The typical stratigraphy for the Walloon Sub-Group is shown in **FIGURE 5**. The geological model has been based on correlation of the well-established stratigraphic units of the Taroom Coal Measures. Correlation across the deposit was based on four stratigraphic units; Tangalooma Sandstone, Auburn Seam, Bulwer Seam and Condamine Seam. The coal seam units were correlated based on slimline geophysical log signatures. The lenticular nature of the Surat Basin coal can make correlation difficult, especially, as in this case, where drillholes are widely-spaced. Several validation passes using cross-section and structure models were used to validate the stratigraphic and ply correlations. The nomenclature used to correlate seams and plies is shown in **FIGURE 6**. Stratigraphic and ply correlations for the underlying Condamine Seam which was not used in the resource estimates is shown as **FIGURE 7**.

The cross-sections shown in **FIGURE 8** indicate the general structural trends across the project area as well as the Condamine Package (**FIGURE 7**) which underlies the Bullwer Package (**FIGURE 6**) across the project area. The Condamine Package has been intersected by historical drilling however there are not enough drill intersections for it to be included in the Exploration Targets.

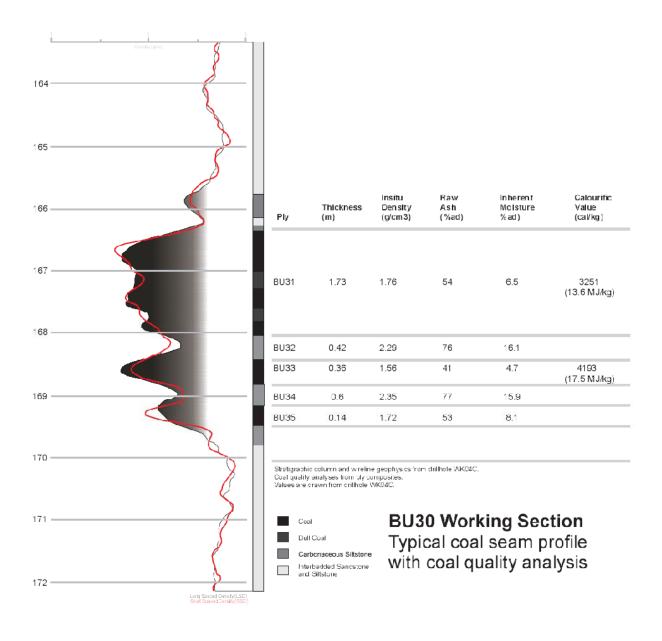
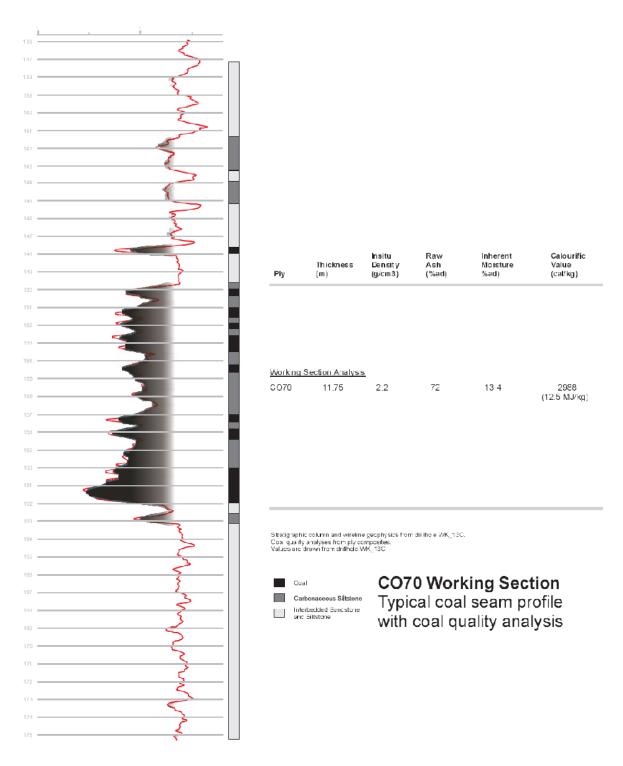
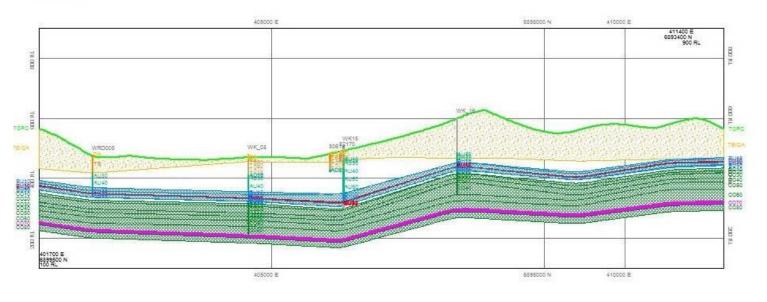
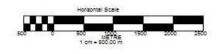
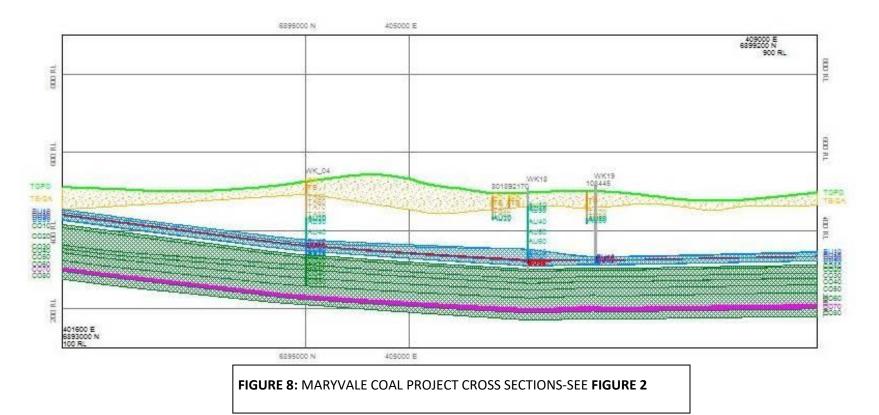


FIGURE 6: TYPICAL PROFILE OF BULWER PACKAGE


FIGURE 7: TYPICAL PROFILE OF CONDAMINE PACKAGE

The primary target within the Bulwer Seam is the BU30 package, which was correlated in detail using a fiveply model, namely BU31-BU35 (**FIGURE 6**). A ply by ply correlation of a Bulwer package working section from each intersection associated to EPC1506 was completed. **FIGURE 6** shows the typical seam profile of the Bulwer package and typical coal quality results for the plies. In 2010, a secondary target, Condamine package (CO70) was also correlated in detail across the area. Correlation of a Condamine package working section using each intersection associated within EPC1506 was completed. **FIGURE 7** shows the typical seam profile of the Condamine package along with the typical coal quality results for the seam.

The target for exploration drilling in the 2016 program was the Bulwer package and only drillhole WK16 was drilled deep enough to intersect the upper part of the Condamine package. The Condamine package has not been included in the Resource estimation. Additionally, the Auburn package (uppermost package) has not been considered as viable for deriving Resources and is not included in this modelling report.

The information in this announcement that relates to in situ coal resources potential is based on information compiled by Wes Nichols, Lynne Banwell and GeoConsult Pty Ltd and reviewed by Warwick Smyth, who is a member of the Australasian Institute of Mining and Metallurgy (CP) Geology; and the Australian Institute of Geoscientists.

Wes Nichols is a qualified geoscientist (MAppSc, MASG, FIQA) and member of the Australasian Institute of Mining and Metallurgy (CP) Geology and has over 28 years' experience in the mineral resources sector.

Lynne Banwell is a qualified geologist (BSc(Hons), MAusIMM, MGSA) and a Consultant Geologist for GeoConsult Pty. Ltd. She has over 30 years' experience relevant the style of mineralisation, which allows her to qualify as a Competent Person as defined by the 2012 edition of the Australian Code for Reporting of Resources.

Warwick Smyth is a qualified geologist (BSc Geol, Grad Dip AF&I, MAusIMM (CP), MGSA, MAIG), and a Principal Consultant for GeoConsult Pty. Ltd. and has over 25 years experience which is relevant to the style of mineralisation, the type of deposit under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined by the 2014 edition of the Australian Code for Reporting of Coal Resources.

Neither Warwick Smyth nor GeoConsult Pty Ltd has any material interest or entitlement, direct or indirect, in the securities of Kaili Resources Ltd or the Projects. GeoConsult has been commissioned to provide geological services to Kaili Resources Ltd since early 2008.

Warwick Smyth and GeoConsult Pty Ltd consent to the use of this statement and references to it and extracts from it, in the form and context in which they are included.

Jianzhong Yang Chairman 6 February 2017

APPENDIX C JORC RESOURCE CHECKLIST (JORC TABLE 1)

JORC Table 1

Section 1 – Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling strategy of the Bulwer package through the study area has generally been lithologically based. Samples have been taken at a scale detailed enough to allow compositing into the correlated ply's. Prior to the current exploration program (2016) only one borehole had been cored and sampled, being Clean Global Energy 2010 exploration program hole WK04C. A further core hole (WK16C) has been completed during the Kaili Resources program. In both core holes to date, only the Bulwer seam was sampled with a maximum single sample length of 0.50m of coal. Coal plies were sampled discretely on the basis of lithological characteristics. All non-coal material and partings less than 0.10m have been included with the coal ply and noted in the lithological description. Non-coal interburden material greater than 0.10m has sampled separately. Geophysical corrections are performed to confirm representative core recovery of the seam and samples. The qualified samples were then transported to the laboratory via courier. All coal Quality samples from the Kaili Resources drilling programs were sent to GeoConsult's Laboratory, Newstead, Queensland. All coal quality samples were prepared and analysed using Australian Standard testing methodologies. All coal and roof and floor dilution samples were then transported to the laboratory via GeoConsult's collection service. All coal quality samples were prepared and analysed using Australian testing methodologies at GeoConsult's collection service. All coal quality samples were prepared and analysed using Australian testing methodologies at GeoConsult's NATA accredited lab, Newstead, Brisbane Qld.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-	 Cored holes WK_04C, WK_13C & WK_16C are HQ3, 61mm diameter diamond cores. Details on the WRD-*C series cores are available in QDEX reports.

Criteria	JORC Code explanation	Commentary
	sampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An assessment of core recovery was completed by comparing the recovered thickness measured during geological logging and by the driller, with geophysical picked thicknesses from the geophysical logs.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All holes were lithologically logged. Brightness logging has been conducted on the cored holes in the Maryvale Area. Geological and geotechnical features were identified and logged in core holes. Holes drilled in the 2010 exploration program were geophysically logged. Typically gamma, density and calliper were run. Holes drilled in the 2016 exploration program were geophysically logged. Typically gamma, density and calliper were run by Geolog Pty Ltd. All chip holes have been geologically logged. The calibration of the geophysical tools was conducted by the geophysical logging company.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is 	 Sampling for analysis was taken on cored holes WK04C in the 2010 exploration program and WK16C in the 2016 exploration program. Additionally, grab samples were taken from two 2016 rotary open holes. For coal quality analysis, core was sampled in its entirety. The coal quality analytical laboratories used to analyse the Bulwer Seam coal comply with Australian Standards for sample preparation. All core samples to date were double bagged on site and transported to the GeoConsult Laboratory in Newstead for testing. GeoConsult's laboratory complies with Australian Standards for sample preparation and subsampling. Samples were crushed to -4.0mm ¼ of the total original sample mass is utilised for raw sample analysis which includes proximate,

Criteria	JORC Code explanation	Commentary
	 representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	total sulphur, relative density, calorific value and moisture in the analysis sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All coal quality and geotechnical analysis techniques are per Australian Standards and completed at GeoConsult's NATA accredited laboratory. Down-hole geophysical logging tools are per industry accepted standards, with natural gamma, density and caliper types run on all 2010 & 2016 holes, The calibration of the geophysical tools was conducted by the geophysical logging company.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 GeoConsult's laboratory complies with the Australian Standards for coal quality testing and, as such, conducted the verifications for coal quality analysis outlined in the standards. Data queries are generated through verification software and standard checks. Any result that falls outside expected tolerances is highlighted at the laboratory for follow-up and secondary analysis if required. No adjustments have been made to the coal quality data. Analysis results are presented on an air-dried basis.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The database consists of a significant number of pre-2010 holes (previous coal exploration drilling). The locations of the pre-2010 holes are based on the locations reported in relinquishment reports and department reports. Unrecorded and anomalous collar elevations reported for pre-2010 drillholes were adjusted to collars calculated from the regional topographic surface grid. Both holes with surveyed and calculated collar elevations are used for modelling resources.

Criteria	JORC Code explanation	Commentary
		 Stage 1 – 2010 WK series: hole locations have been surveyed. Stage 2 – 2016 WK series: hole locations have been surveyed. All collar locations are stored in MGA94 co-ordinates.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drillhole spacing across EPC1506 is variable, typically between 2-6km. Two cored coal quality holes are associated with the Bulwer package Inferred Maryvale Area resource polygon. 30 drillholes across the EPC containing BU30 package intersections form the basis of the Maryvale Area model with the resource polygon based 2010 & 2016 drillholes. No sample compositing was carried out.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 In general, the region appears to be relatively unremarkable in terms of structure. However, a suspected fault was intersected in drillholes WK16 and WK16C. At present, there is insufficient data to define this fault. The orientation and throw on the fault should become evident with further drilling. The deposit area is known to sit within close proximity to the coal subcrop of the Walloon Subgroup. This subcrop trends E to W and plunges N to NE. The general structural regime may change with further drilling as borehole spacing becomes closer allowing finer resolution of structure between drill holes. All drill holes are vertical to intersect the largely flat-lying coal bed stratigraphy.
Sample security	• The measures taken to ensure sample security.	• Sample Security was ensured under a chain of custody between GeoConsult exploration site geology personnel and the GeoConsult laboratory for both the 2010 and 2016 exploration programs.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 2010 sampling was undertaken by GeoConsult personnel under the supervision of Clean Global Energy (predecessor to Kaili Resources). For the 2016 exploration program, sampling was undertaken and supervised by GeoConsult personnel with oversight by Kaili Resources. The GeoConsult laboratory undertook internal audits and checks in line with the Australian standards and their NATA certification.

Section 2 – Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Maryvale Project area comprises Exploration Permit Areas Coal EPC 1506 & which are wholly owned by Kaili Resources Ltd. Maryvale is a brownfields exploration area. No mining within the project area has been conducted to date.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration data for the Maryvale Project Area prior to the 2010 & 2016 exploration program has been obtained from public domain records and includes drillholes data derived from various exploration programs.
		 The Maryvale dataset comprises two partially cored drillholes and six open drillholes from the Clean Global Energy 2010 exploration program. The 2010 drillholes are the central basis of the geological data used in the resource estimate. These holes specifically targeted the Lower Walloon Coal Measures in depth range 100 to 350m. They intersect significant portions of the stratigraphic sequence. These holes are located widely over the region. The 2016 exploration program comprises five open holes and one cored hole, targeting the
		 Bulwer Seam and drilled by Kaili Resources Ltd. One hole (WK_5) did not intersect the target; all others did. Drillholes from previous exploration by AMAX, Millmerran Coal Pty Ltd, New Hope Collieries Pty Ltd are included in the dataset. The AMAX "WRD-series" comprises 80 drillholes with wireline density logs drilled between 1975-80. The WRD-series includes 12 cored holes with raw coal quality analyses. The Millmerran Coal "K-series" drillholes were drilled between 1971-1974 and comprises 48 holes of which 25 are directly associated to the EPC1506 project area. New Hope
		 Collieries drilled 13 holes between 1981-1983 which comprise the 2000-series. New Hope Collieries drillholes are located immediately to the northeast of the EPC1506 resource area. In addition to the drillholes from previous coal explorers 85 waterbores have been included in the drillhole dataset. The waterbores do not contain wireline density logs therefore the coal intersections are considered unreliable. As such, waterbore coal intersections have been considered for exploration planning but not used in the resource model.
Geology	 Deposit type, geological setting and style of mineralisation. 	• The Maryvale Project covers the Walloon Sub-Group, primarily targeting the Taroom Coal Measures. Correlation across the deposit was based on four stratigraphic units; Tangalooma Sandstone, Auburn Seam, Bulwer Seam and Condamine Seam – the last three comprising the Taroom Coal Measures. The lenticular nature of the Surat Basin coal can make correlation

Criteria	JORC Code explanation	Commentary
		difficult, especially, as in this case, where drillholes are widely-spaced.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 A detailed list of drill holes used to define the resource in Maryvale exploration tenure can be found in the document Appendix G – Maryvale Drillhole Details. All drill holes have been modelled as vertical.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• All coal plies where multiple coal quality samples were taken were given composite coal quality values. These composite values were calculated using Maptek's Vulcan modelling software (Coal Compositing application). Density values were weighted by thickness; all raw coal parameters were weighted by thickness and density (ad), i.e., mass weighted.
Relationship between mineralisat- ion widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Seam thicknesses have been reconciled to geophysics where available to ensure accuracy. Drill holes have been drilled vertically with minor deviations being recorded. Taroom Coal Measures sequence is relatively flat lying (less than 5 degrees dip) with strata dipping to the east.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any	• All appropriate diagrams are contained with Appendices E & F of this report. Plans of working section thickness and structure roof plus representative cross sections are included.

Criteria	JORC Code explanation	Commentary
	significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All available validated data has been included in the geological model and associated resources report. Non-validated historical data does exist in the exploration tenure but has little or no impact on the geological model and resource statement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No 2D Seismic lines are present within the area or surrounding the project. Regional airborne gravity and magnetic images also suggest continuity of the Coal Measures within EPC1506 resource area.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 An upcoming exploration program is currently being designed, and the outcome of this resource estimate and corresponding geological models will be an important input. More detailed topography information is required. This will allow reconciliation of drillhole collar heights to topography. Further drilling is required to delineate and understand the possible fault which appears to run through the centre of the project area. Gaining additional coal quality data is essential to understanding this resource better and to upgrade the classification of the resource.

Section 3 – Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Database automation, validation routines and look up codes were utilized, where possible, to remove human error element.
Site visits	Comment on any site visits undertaken by the	• Several site visits were made to the Maryvale project by GeoConsult personnel (including the

Criteria	JORC Code explanation	Commentary
	 Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Competent Person on 18/06/2016) and Kaili Resources personnel. Additionally, several field trips have been made to the Surat Basin in general. A review was conducted by Kaili Resources on the field procedures and sampling practices, as informed by GeoConsult, and they were deemed to be of an acceptable industry standard. Given the geological nature of the deposit and the similarity to other deposits in the Surat Basin, the Competent Persons' existing knowledge of the area is deemed sufficient.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The drillhole density in the Maryvale project area allows a moderate level of confidence in the nature of package thickness and continuity. Additional work is required to understand the coal quality consistency and interpreted locations of faults. The effect of alternative interpretations in seam correlations would result in a relatively unchanged total tonnage, but the effect on resource categorisation/domaining could possibly give a reduction in inferred resource. Factors affecting continuity in quality and geology would likely be syn-depositional variations such as changes in energy, as well as erosional features, channels etc.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• Deposit dimensions are approximately 25km along strike and 10 m down dip. Within the lease area the coal seams within the Taroom Coal Measures are present from surface to a depth of approximately300.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). 	 Maptek Vulcan (Vers 9.1) software was used to generate the resource estimate. The triangulation modelling algorithms were utilized for structural grids. These algorithms are considered the appropriate techniques for modelling coal deposits and are widely used within the industry. Resource classification based on recommendations from the Australian Guidelines for Estimating and Classification of Coal Resources (2014). Working section(s) have been developed based on thickness (of the coal seams and stone partings) and indicative coal quality (predominantly Ash). The relatively uncomplicated nature of the deposit allowed for the generation of resources using simple triangulation algorithms. The validation process prior to geological modelling and resource generation involves the following steps: a) Site geologist validates all drill hole data following data acquisition and entry; b) Project geologist validates all primary data (drill holes, geophysical surveys, ground mapping), coal quality results and external data; and

Criteria	JORC Code explanation	Commentary
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 c) Resource geologist validates all primary and coal quality data and any external data. Validation routines include, but are not limited to: a) Comparison of geology and geophysics in drill holes; b) Cross sections of model vs. drill holes and geophysical surveys.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 All tonnages are calculated on an air dried basis. No moisture adjustment has been made.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	• A cut-off grade of 60% ash has been applied.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Possible extraction resources at the Maryvale Project In Situ Gasification (ISG) and open-cut mining. ISG Resources are assumed to have a minimum depth of cover of 100m. A minimum mining thickness of 1.5m is assumed for the Resources.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment	 Maryvale Resources have been considered on an In-Situ Gasification (ISG) basis only. The parameters that justify this ISG basis are given in Appendix D.

Criteria	JORC Code explanation	Commentary
	processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	• GeoConsult is unaware of any limiting environmental factors at this stage of the project development.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 The insitu density of the coal packages has not been determined using the Preston Sanders insitu relative density estimation equation. An average air-dried relative density value has been used in the Resource calculations.
Classificat-ion	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). 	 Classification of Mineral Resources is based upon spacing between drill holes that can be considered Points of Observation (POB). POBs must have a geological and intersect the entire Bulwer Seam. Resource classification based on recommendations from the Australian Guidelines for Estimating and Classification of Coal Resources (2014). The variation in resource polygons for the working section is appropriate for the deposit in the opinion of the Competent Person

Criteria	JORC Code explanation	Commentary
	Whether the result appropriately reflects the Competent Person's view of the deposit.	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 An internal company review of the modelling method and associated resource estimate was completed. The process and results were deemed suitable for public release.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 	 Statistical analysis of ply and working section thickness was undertaken. This was to ensure consistency within the plies and working section, identification of outliers, and verification of any incorrect coal quality reporting. Due to the sparse nature of the data available, no geostatistical analysis was undertaken.

APPENDIX G				
DRILLHOLE DETAILS				
Headers				

Headers							
Hole Name	Easting	Northing	Collar RL	Total Depth			
108356	400,360	6,900,206	496.44	78.00			
108359	412,742	6,892,867	478.52	39.00			
108377	419,740	6,895,342	493.08	25.30			
108882	414,976	6,894,864	497.47	44.00			
2178	422,055	6,894,412	506.69	93.00			
2179	421,667	6,893,826	541.52	59.00			
2180	421,667	6,893,632	549.33	77.00			
2181	421,960	6,894,246	517.95	41.00			
2182	421,465	6,894,425	512.98	35.00			
2183	422,722	6,894,230	543.74	41.00			
2184	420,307	6,895,772	500.75	35.00			
2188	422,763	6,894,188	549.66	62.40			
55423	415,331	6,895,724	517.71	65.20			
80195	408,149	6,892,840	505.53	93.00			
K44A	399,145	6,899,779	471.59	45.72			
WK17	408,173	6,892,717	505.00	189.00			
WK18	406,077	6,896,902	508.00	207.00			
WK19	406,878	6,897,302	516.00	201.00			
WK_02	410,365	6,893,084	566.11	270.00			
WK_04	404,054	6,894,911	528.45	270.00			
WK_04C	404,044	6,894,898	528.04	192.00			
WK_06	408,897	6,894,563	535.28	306.00			
WK_07	411,160	6,895,326	584.89	318.00			
WK_08	404,668	6,897,649	480.69	270.00			
WK_13	411,272	6,889,924	475.48	302.00			
WK_13C	411,259	6,889,920	475.50	244.00			
WK_16	407,593	6,895,752	602.00	255.00			
WK_16C	407,595	6,895,748	602.00	176.00			
WRD002	393,150	6,901,250	456.65	106.00			
WRD002C	393,150	6,901,250	456.65	51.28			
WRD003	396,400	6,900,550	500.22	111.00			
WRD003C	396,400	6,900,550	500.22	42.18			
WRD005	402,500	6,899,100	477.98	141.00			
WRD008	404,800	6,892,050	488.37	116.00			
WRD009	407,000	6,890,200	462.13	131.00			
WRD009C	407,000	6,890,200	462.13	26.05			
WRD010	409,950	6,890,200	466.01	106.00			
WRD011	413,500	6,890,900	476.26	131.00			
WRD012	417,750	6,895,500	525.95	116.00			
WRD013	416,400	6,889,200	532.46	131.00			
WRD014	413,400	6,886,700	510.15	111.00			

Hole Name	Easting	Northing	Collar RL	Total Depth
WRD014C	413,400	6,886,700	510.15	41.66
WRD055	417,000	6,886,000	553.98	71.00
WRD055C	417,000	6,886,000	553.98	43.10
WRD056	415,400	6,886,600	531.31	66.00
WRD057	414,500	6,885,400	549.27	66.00
WRD058	414,800	6,887,800	512.34	71.00
WRD059	412,500	6,888,400	509.65	76.00
WRD059C	412,500	6,888,400	509.65	41.47
WRD060	415,000	6,889,900	515.66	71.00
WRD061	416,400	6,894,800	504.00	76.00
WRD062	414,900	6,895,600	518.13	81.00
WRD063	415,300	6,894,900	498.23	71.00
WRD067	406,100	6,892,400	471.64	76.00
WRD068	403,300	6,891,500	481.41	71.00
WRD069	404,600	6,890,600	456.51	71.00
WRD069C	404,600	6,890,600	456.51	62.80
WRD070	404,400	6,888,450	495.80	71.00
WRD070C	404,400	6,888,450	495.80	65.21
WRD071	402,500	6,888,700	470.82	55.00
WRD071C	402,500	6,888,700	470.82	28.10
WRD072	404,700	6,887,350	531.70	76.00
WRD072C	404,700	6,887,350	531.70	73.05
WRD073	406,800	6,888,200	488.99	81.00
WRD073C	406,800	6,888,200	488.99	74.28
WRD074	410,000	6,887,400	527.13	71.00
WRD074C	410,000	6,887,400	527.13	61.05
WRD075	411,200	6,889,700	477.15	71.00
WRD077	395,000	6,897,350	465.80	71.00
WRD078	392,000	6,898,400	444.87	71.00
WRD079	395,300	6,900,800	491.54	71.00
WRD092	406,600	6,891,300	464.11	51.80
WRD093	405,700	6,890,400	459.47	56.00
WRD094	403,400	6,888,600	474.47	61.00
WRD095	406,800	6,886,800	542.00	56.00
WRD097	410,000	6,889,000	480.03	61.00
WRD098	412,400	6,890,700	472.59	61.00
WRD099	413,000	6,887,450	515.85	61.00
WRD100	409,200	6,891,100	489.85	71.00

Seam/Ply Intersections

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
108356	BU10	60.00	62.00	2.00	-
108356	BU20	67.00	69.00	2.00	-
108356	BU30	71.00	78.00	7.00	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
108359	BU30	18.00	21.00	2.00	1.00
108359	BU50	27.00	28.00	1.00	-
108359	CO10	38.50	39.00	0.50	-
108377	CO10	24.10	25.30	1.20	-
108882	BU30	42.00	44.00	2.00	-
2178	BU20	12.00	14.00	2.00	-
2178	BU30	14.00	17.00	3.00	-
2178	BU80	17.00	93.00	76.00	-
2179	BU20	19.00	25.00	6.00	-
2179	BU30	25.00	28.30	3.30	-
2179	BU80	28.30	50.90	22.60	-
2179	CO10	50.90	59.00	8.10	-
2180	BU20	29.00	38.00	9.00	-
2180	BU30	38.25	41.80	3.55	-
2180	BU80	42.00	62.75	20.75	-
2180	CO10	62.75	69.60	6.85	-
2180	CO20	69.60	77.00	7.40	-
2181	BU20	24.00	33.00	9.00	-
2181	BU30	33.00	37.00	4.00	-
2182	BU10	17.70	22.50	4.80	-
2182	BU20	22.50	35.00	12.50	-
2183	BU20	31.00	31.50	0.50	-
2183	BU30	31.50	35.00	3.50	-
2183	BU80	35.00	41.00	6.00	-
2184	BU30	26.50	29.50	3.00	-
2184	BU40	29.50	35.00	5.50	-
2188	BU30	33.87	36.73	1.69	1.17
55423	BU30	62.20	65.20	3.00	-
80195	BU10	79.00	89.00	10.00	-
80195	BU20	89.00	93.00	4.00	-
K44A	BU10	12.19	12.50	0.31	-
K44A	BU20	12.50	23.93	11.43	-
K44A	BU30	23.93	28.35	4.42	-
K44A	BU40	28.35	42.67	14.32	-
K44A	BU50	42.67	43.13	0.46	-
K44A	BU80	43.13	45.72	2.59	-
WK17	BU10	161.80	162.30	0.50	-
WK17	BU20	162.30	175.20	12.90	-
WK17	BU31	175.20	175.90	0.70	-
WK17	BU32	175.90	176.50	0.60	-
WK17	BU33	176.50	177.30	0.80	-
WK17	BU34	177.30	178.30	1.00	-
WK17	BU35	178.30	180.00	1.70	-
WK18	BU10	162.20	162.60	0.40	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WK18	BU20	162.60	190.00	27.40	-
WK18	BU31	190.00	191.70	1.70	-
WK18	BU32	191.70	191.90	0.20	-
WK18	BU33	191.90	193.00	1.10	-
WK18	BU34	193.00	193.40	0.40	-
WK18	BU35	193.40	193.80	0.40	-
WK19	BU10	183.70	185.00	1.30	-
WK19	BU20	185.00	190.30	5.30	-
WK19	BU31	190.30	190.60	0.30	-
WK19	BU32	190.60	190.80	0.20	-
WK19	BU33	190.80	191.20	0.40	-
WK19	BU34	191.20	191.80	0.60	-
WK19	BU35	191.80	192.00	0.20	-
WK19	BU40	192.00	201.00	9.00	-
WK_02	BU10	98.55	99.40	0.85	-
WK_02	BU20	99.40	101.20	1.80	-
WK_02	BU31	101.20	102.50	1.30	-
WK_02	BU32	102.50	102.90	0.40	-
WK_02	BU33	102.90	103.72	0.82	-
WK_02	BU34	103.72	104.02	0.30	-
WK_02	BU35	104.02	104.87	0.85	-
WK_02	BU40	104.87	115.38	10.51	-
WK_02	BU50	115.38	119.70	4.32	-
WK_02	BU80	119.70	125.60	5.90	-
WK_02	CO10	125.60	133.88	8.28	-
WK_02	CO20	133.88	141.15	7.27	-
WK_02	CO30	141.15	156.67	15.52	-
WK_02	CO40	156.67	164.47	7.80	-
WK_02	CO50	164.47	189.10	24.63	-
WK_02	CO60	189.10	228.85	39.75	-
WK_02	CO70	228.85	240.75	11.90	-
WK_02	CO80	240.75	260.00	19.25	-
WK_04	BU10	151.82	161.10	9.28	-
WK_04	BU20	161.10	166.31	5.21	-
WK_04	BU31	166.31	167.94	1.63	-
WK_04	BU32	167.94	168.16	0.22	-
 WK_04	BU33	168.16	168.56	0.40	-
 WK_04	BU34	168.56	168.93	0.37	-
WK_04	BU35	168.93	169.22	0.29	-
 WK_04	BU40	169.22	180.50	11.28	-
 WK_04	BU50	180.50	181.00	0.50	-
 WK_04	BU80	181.00	191.10	10.10	-
WK 04	CO10	191.10	197.40	6.30	-
WK 04	CO20	197.40	216.00	18.60	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WK_04	CO30	216.00	228.50	12.50	-
WK_04	CO40	228.50	250.00	21.50	-
WK_04	CO50	250.00	270.00	20.00	-
WK_04C	BU10	151.86	160.11	8.25	-
WK_04C	BU20	160.11	166.31	6.20	-
WK_04C	BU31	166.31	167.63	1.32	-
WK_04C	BU32	167.63	167.81	0.18	-
WK_04C	BU33	167.81	168.83	1.02	-
WK_04C	BU34	168.83	169.42	0.59	-
WK_04C	BU35	169.42	169.56	0.14	-
WK_04C	BU40	169.56	180.50	10.94	-
WK_04C	BU50	180.50	181.00	0.50	-
WK_04C	BU80	181.00	192.00	11.00	-
WK_06	BU10	123.00	129.28	6.28	-
WK_06	BU20	129.28	138.38	9.10	-
WK_06	BU31	138.38	140.10	1.72	-
WK_06	BU32	140.10	140.39	0.29	-
WK_06	BU33	140.39	141.20	0.81	-
WK_06	BU34	141.20	141.45	0.25	-
WK_06	BU35	141.45	141.76	0.31	-
WK_06	BU40	141.76	146.10	4.34	-
WK_06	BU50	146.10	146.70	0.60	-
WK_06	BU80	146.70	159.20	12.50	-
WK_06	CO10	159.20	167.80	8.60	-
WK_06	CO20	167.80	181.40	13.60	-
WK_06	CO30	181.40	201.00	19.60	-
WK_06	CO40	201.00	216.00	15.00	-
WK_06	CO50	216.00	236.00	20.00	-
WK_06	CO60	236.00	257.50	21.50	-
WK_06	CO70	257.50	268.37	10.87	-
WK_06	CO80	268.37	290.13	21.76	-
WK_07	BU10	131.00	141.00	10.00	-
WK_07	BU20	141.00	155.12	14.12	-
WK_07	BU31	155.12	156.28	1.16	-
WK_07	BU32	156.28	157.08	0.80	-
WK_07	BU33	157.08	157.40	0.32	-
WK_07	BU34	157.40	157.63	0.23	-
 WK_07	BU35	157.63	158.17	0.54	-
WK_07	BU40	158.17	168.00	9.83	-
 WK_07	BU50	168.00	169.00	1.00	-
 WK_07	BU80	169.00	180.00	11.00	-
 WK_07	CO10	180.00	189.45	9.45	-
 WK_07	CO20	189.45	194.17	4.72	-
 WK 07	CO30	194.17	210.55	16.38	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WK_07	CO40	210.55	231.07	20.52	-
WK_07	CO50	231.07	246.96	15.89	-
WK_07	CO60	246.96	295.50	48.54	-
WK_07	CO70	295.50	308.00	12.50	-
WK_07	CO80	308.00	318.00	10.00	-
WK_08	BU10	126.10	134.88	8.78	-
WK_08	BU20	134.88	146.45	11.57	-
WK_08	BU31	146.45	147.50	1.05	-
WK_08	BU32	147.50	147.78	0.28	-
WK_08	BU33	147.78	148.60	0.82	-
WK_08	BU34	148.60	148.90	0.30	-
WK_08	BU35	148.90	149.70	0.80	-
WK_08	BU40	149.70	158.00	8.30	-
WK_08	BU50	158.00	158.50	0.50	-
WK_08	BU80	158.50	166.00	7.50	-
WK_08	CO10	166.00	174.08	8.08	-
WK_08	CO20	174.08	197.79	23.71	-
WK_08	CO30	197.79	208.60	10.81	-
WK_08	CO40	208.60	222.00	13.40	-
WK_08	CO50	222.00	242.00	20.00	-
WK_08	CO60	242.00	270.00	28.00	-
WK_13	CO20	20.00	26.00	6.00	-
WK_13	CO30	26.00	55.00	29.00	-
WK_13	CO40	55.00	93.00	38.00	-
WK_13	CO50	93.00	116.00	23.00	-
WK_13	CO60	116.00	150.20	34.20	-
WK_13	CO70	150.20	162.80	12.60	-
WK_13	CO80	162.80	186.70	23.90	-
WK_13C	CO20	19.00	36.00	17.00	-
WK_13C	CO30	36.00	55.00	19.00	-
WK_13C	CO40	55.00	93.00	37.00	1.00
WK_13C	CO50	93.00	116.00	19.00	4.00
WK_13C	CO60	116.00	150.10	34.10	-
WK_13C	CO70	150.10	161.85	11.75	-
WK_13C	CO80	161.85	186.96	25.11	-
WK_16	BU10	148.30	148.50	0.20	-
WK_16	BU20	148.50	161.30	12.80	-
WK_16	BU31	161.30	161.70	0.40	-
WK_16	BU32	161.70	161.75	0.05	-
WK_16	BU33	161.75	162.00	0.25	-
WK_16	BU34	162.00	162.25	0.25	-
WK_16	BU35	162.25	162.70	0.45	-
WK_16	BU40	162.70	174.40	11.70	-
WK_16	BU50	174.40	175.00	0.60	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WK_16	BU80	175.00	184.10	9.10	-
WK_16	CO10	184.10	184.80	0.70	-
WK_16	CO20	184.80	198.75	13.95	-
WK_16	CO30	198.75	212.20	13.45	-
WK_16	CO40	212.80	255.00	42.20	-
WK_16C	BU10	149.20	149.40	0.20	-
WK_16C	BU20	149.40	164.72	15.32	-
WK_16C	BU31	164.72	165.00	0.28	-
WK_16C	BU32	165.00	165.16	0.16	-
WK_16C	BU33	165.16	165.65	0.49	-
WK_16C	BU34	165.65	166.00	0.35	-
WK_16C	BU35	166.00	166.28	0.28	-
WRD002	BU40	4.00	14.20	10.20	-
WRD002	BU50	14.20	15.80	1.60	-
WRD002	BU80	15.80	40.55	24.75	-
WRD002	CO10	40.55	50.80	10.25	-
WRD002	CO20	50.80	79.10	28.30	-
WRD002	CO30	79.10	93.25	14.15	-
WRD002	CO40	93.25	106.00	12.75	-
WRD002C	BU80	39.50	40.54	1.04	-
WRD002C	CO10	40.54	50.81	10.27	-
WRD002C	CO20	50.81	51.28	0.47	-
WRD003	BU10	95.50	107.00	11.50	-
WRD003	BU20	107.00	111.00	4.00	-
WRD003C	CO40	15.50	15.62	0.12	-
WRD003C	CO50	15.62	25.60	9.98	-
WRD003C	CO60	25.60	35.29	9.69	-
WRD003C	CO70	35.29	42.18	6.89	-
WRD005	BU10	110.10	121.66	11.56	-
WRD005	BU20	121.66	129.58	7.92	-
WRD005	BU30	129.58	132.14	2.56	-
WRD005	BU40	132.14	141.00	8.86	-
WRD008	CO30	16.50	24.00	7.50	-
WRD008	CO40	24.00	34.50	10.50	-
WRD008	CO50	34.50	56.80	22.30	-
WRD008	CO60	56.80	77.20	20.40	-
WRD008	CO70	77.20	87.20	10.00	-
WRD008	CO80	87.20	96.20	9.00	-
WRD009	CO70	20.75	25.34	4.59	-
WRD009	CO80	25.34	96.50	71.16	-
WRD009C	CO70	20.75	25.34	4.59	-
WRD009C	CO80	25.34	26.05	0.71	-
WRD010	BU80	15.80	26.80	11.00	-
WRD010	CO10	26.80	39.42	12.62	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WRD010	CO20	39.42	54.80	15.38	-
WRD010	CO30	54.80	62.00	7.20	-
WRD010	CO40	62.00	106.00	44.00	-
WRD011	CO30	13.00	32.20	19.20	-
WRD011	CO40	32.20	51.00	18.80	-
WRD011	CO50	51.00	88.40	37.40	-
WRD011	CO60	88.40	117.50	29.10	-
WRD011	CO70	117.50	131.00	13.50	-
WRD012	BU20	12.50	14.90	2.40	-
WRD012	BU30	14.90	17.80	2.90	-
WRD012	BU40	17.80	25.40	7.60	-
WRD012	BU50	25.40	26.00	0.60	-
WRD012	BU80	26.00	49.50	23.50	-
WRD012	CO10	49.50	54.00	4.50	-
WRD012	CO20	54.00	64.00	10.00	-
WRD012	CO30	64.00	78.00	14.00	-
WRD012	CO40	78.00	96.40	18.40	-
WRD012	CO50	96.40	116.00	19.60	-
WRD013	CO40	1.00	11.00	10.00	-
WRD013	CO50	11.00	32.50	21.50	-
WRD013	CO60	32.50	42.10	9.60	-
WRD013	CO70	42.10	49.70	7.60	-
WRD013	CO80	49.70	73.10	23.40	-
WRD014	CO60	22.00	31.40	9.40	-
WRD014	CO70	31.40	40.00	8.60	-
WRD014	CO80	40.00	71.20	31.20	-
WRD014C	CO60	20.00	32.12	12.12	-
WRD014C	CO70	32.12	39.96	7.84	-
WRD014C	CO80	39.96	41.66	1.70	-
WRD055	CO60	11.70	31.90	20.20	-
WRD055	CO70	31.90	43.40	11.50	-
WRD055	CO80	43.40	71.00	27.60	-
WRD055C	CO60	9.70	31.90	22.20	-
WRD055C	CO70	31.90	43.10	11.20	-
WRD056	CO60	3.00	6.80	3.80	-
WRD056	CO70	6.80	20.40	13.60	-
WRD056	CO80	20.40	42.55	22.15	-
WRD057	CO80	14.80	43.10	28.30	-
WRD058	CO70	12.80	23.00	10.20	-
WRD058	CO80	23.00	55.95	32.95	-
WRD059	CO60	8.40	28.00	19.60	-
WRD059	CO70	28.00	41.10	12.78	0.32
WRD059	CO80	41.10	61.15	20.05	-
WRD059C	CO60	8.40	27.87	19.47	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WRD059C	CO70	27.87	40.34	12.47	-
WRD059C	CO80	40.34	41.47	1.13	-
WRD060	CO40	6.00	39.40	33.40	-
WRD060	CO50	39.40	67.20	27.80	-
WRD060	CO60	67.20	71.00	3.80	-
WRD061	BU20	26.00	30.10	4.10	-
WRD061	BU30	30.10	33.65	3.55	-
WRD061	BU40	33.65	41.40	7.75	-
WRD061	BU50	41.40	41.80	0.40	-
WRD061	BU80	41.80	66.00	24.20	-
WRD061	CO10	66.00	76.00	10.00	-
WRD062	BU10	28.00	36.10	8.10	-
WRD062	BU20	36.10	69.60	33.50	-
WRD062	BU30	69.60	72.30	2.70	-
WRD062	BU40	72.30	74.15	1.85	-
WRD062	BU50	74.15	74.40	0.25	-
WRD062	BU80	74.40	81.00	6.60	-
WRD063	BU20	21.20	42.60	21.40	-
WRD063	BU30	42.60	44.95	2.35	-
WRD063	BU40	44.95	58.00	13.05	-
WRD063	BU50	58.00	58.20	0.20	-
WRD063	BU80	58.20	71.00	12.80	-
WRD067	BU20	19.75	20.30	0.55	-
WRD067	BU30	20.30	24.25	3.95	-
WRD067	BU40	24.25	34.80	10.55	-
WRD067	BU50	34.80	36.00	1.20	-
WRD067	BU80	36.00	45.80	9.80	-
WRD067	CO10	45.80	53.20	7.40	-
WRD067	CO20	53.20	76.00	22.80	-
WRD068	CO20	22.00	71.00	49.00	-
WRD069	CO70	18.70	26.40	7.70	-
WRD069	CO80	26.40	57.00	30.60	-
WRD069C	CO70	18.70	26.40	7.70	-
WRD069C	CO80	26.40	57.03	30.63	-
WRD070	CO60	2.00	33.45	31.45	-
WRD070	CO70	33.56	38.90	5.34	-
WRD070	CO80	38.90	61.70	22.80	-
WRD070C	CO60	2.00	32.96	30.96	-
WRD070C	CO70	32.96	40.10	7.14	-
WRD070C	CO80	40.10	61.42	21.32	-
WRD071	CO80	3.00	25.00	22.00	-
WRD071C	CO80	3.00	25.51	22.51	-
WRD072	CO50	20.40	30.60	10.20	-
WRD072	CO60	30.60	48.50	17.90	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WRD072	CO70	48.50	58.10	9.60	-
WRD072	CO80	58.10	76.00	17.90	-
WRD072C	CO50	20.40	30.60	10.20	-
WRD072C	CO60	30.60	49.24	18.64	-
WRD072C	CO70	49.24	58.20	8.96	-
WRD072C	CO80	58.20	73.05	14.85	-
WRD073	CO50	21.00	28.40	7.40	-
WRD073	CO60	28.40	67.05	38.65	-
WRD073	CO70	67.05	72.09	5.04	-
WRD073	CO80	72.09	81.00	8.91	-
WRD073C	CO50	21.00	28.40	7.40	-
WRD073C	CO60	28.40	63.00	34.60	-
WRD073C	CO70	63.00	72.09	9.09	-
WRD073C	CO80	72.09	74.28	2.19	-
WRD074	CO50	6.00	29.20	23.20	-
WRD074	CO60	29.20	50.40	21.20	-
WRD074	CO70	50.40	61.20	10.80	-
WRD074	CO80	61.20	71.00	9.80	-
WRD074C	CO50	6.00	29.40	23.40	-
WRD074C	CO60	29.40	57.00	27.60	-
WRD074C	CO70	57.00	61.05	4.05	-
WRD075	CO20	15.00	33.00	18.00	-
WRD075	CO30	33.00	56.35	23.35	-
WRD075	CO40	56.35	70.85	14.50	-
WRD077	CON	14.60	71.00	56.40	-
WRD078	CON	22.60	71.00	48.40	-
WRD079	CO60	9.00	12.75	3.75	-
WRD079	CO70	12.75	20.25	7.50	-
WRD079	CO80	20.25	46.10	25.85	-
WRD092	BU30	15.00	17.00	2.00	-
WRD092	BU40	17.00	24.00	7.00	-
WRD092	BU50	24.00	28.00	4.00	-
WRD092	BU80	28.00	30.80	2.80	-
WRD092	CO10	30.80	37.80	7.00	-
WRD092	CO20	37.80	49.80	12.00	-
WRD092	CO30	49.80	51.80	2.00	-
WRD093	CO40	21.00	22.00	1.00	-
WRD093	CO50	22.00	38.00	16.00	-
WRD093	CO60	38.00	56.00	18.00	-
WRD094	CO80	7.00	22.00	15.00	-
WRD095	CO80	17.00	39.00	22.00	-
WRD097	CO40	13.00	18.00	5.00	-
WRD097	CO50	18.00	52.00	34.00	-
WRD097	CO60	52.00	61.00	9.00	-

Hole Name	Seam/Ply	Depth to Roof	Depth to Floor	Thickness	Parting
WRD098	CO30	23.00	45.50	22.50	-
WRD098	CO40	45.50	53.80	8.30	-
WRD098	CO50	53.80	61.00	7.20	-
WRD099	CO60	16.00	26.00	10.00	-
WRD099	CO70	26.00	38.00	12.00	-
WRD099	CO80	38.00	45.00	7.00	-
WRD100	BU80	23.00	33.00	10.00	-
WRD100	CO10	33.00	41.50	8.50	-
WRD100	CO20	41.50	71.00	29.50	-